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Abstract

Transparency of algorithmic systems has been discussed as
a way for end-users and regulators to develop appropriate
trust in machine learning models. One popular approach,
LIME (Ribeiro, Singh, and Guestrin 2016), even suggests that
model explanations can answer the question “Why should I
trust you?”. Here we show a straightforward method for mod-
ifying a pre-trained model to manipulate the output of many
popular feature importance explanation methods with little
change in accuracy, thus demonstrating the danger of trust-
ing such explanation methods to evaluate the trustworthiness
of models. We show how this explanation attack can mask
a model’s discriminatory use of a sensitive feature, raising
strong concerns about using such explanation methods as re-
liable evaluations to check the fairness of a model.

1 INTRODUCTION
The area of transparency, or interpretability, has emerged as
a way to aid our understanding of the inner workings of a
machine learning model. One motivation is to ensure fair-
ness as part of the ‘Fair, Accountable, and Transparent’ re-
search agenda (Diakopoulos et al. 2018; Weller 2019). Fair-
ness is a key concern in many application areas including se-
lecting candidates for hire or approving loans in banking. A
popular family of approaches for transparency provide fea-
ture importance, or saliency, scores for a given input. These
scores show how important each feature of the input was to
the algorithm’s decision locally around the input.

Since these local saliency methods are the most popu-
lar approaches for evaluating model trustworthiness in prac-
tise (Bhatt et al. 2019), here we investigate their suitability
to evaluate model fairness.

It has been common to suggest that saliency methods can
be used to inspect a model for fairness as follows. We ob-
serve if a model’s outputs depend significantly on a pro-
tected feature such as gender or race, which are termed sen-
sitive. If there is high dependence on a sensitive attribute
then the model appears to be unfair.

In this paper we show that the apparent importance of a
sensitive feature does not reliably reveal anything about fair-
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ness of a model and hence cannot be used to evaluate fair-
ness. We explain how this can happen and provide an in-
structive example demonstrating that a model could have ar-
bitrarily high levels of unfairness across a range of popular
fairness measures, even while appearing to have zero depen-
dence on the relevant sensitive feature. We introduce a prac-
tical approach to modify an existing model in order to down-
grade the apparent importance of a sensitive feature to expla-
nation methods. We empirically demonstrate that downgrad-
ing a feature can occur with little change in model accuracy,
while model unfairness can still remain high.

Our observations raise serious concerns for organisations
or regulators who hope to rely on feature importance inter-
pretability methods to validate the fairness of models. We
focus here on deep learning models, but our ideas extend
naturally to other model classes.

2 RELATED WORK
There is a rapidly growing literature on adversarial exam-
ples (Szegedy et al. 2013), which considers how to fool clas-
sification accuracy by perturbing data points. Once a model
has been well trained, it is possible to take a successfully
classified data point and change it by just a tiny amount such
that the pretrained model now misclassifies the point with
high confidence.

Later it was observed that many explanation methods
are fragile with respect to small changes to a data point,
even if the classification is unaffected (Adebayo et al. 2018;
Kindermans et al. 2019; Alvarez-Melis and Jaakkola 2018).
It was shown that tiny adversarial perturbations to data in-
puts can be generated so that the classification remains
unchanged, but the explanation returned is very different
(Ghorbani, Abid, and Zou 2019). This was analysed in terms
of the geometry of the learned function (Dombrowski et al.
2019).

In this work we do not perturb the data. Instead, we
modify the model in order to manipulate the explanations
of common saliency methods. In particular, our aim is to
modify the model so that for any given data point, mul-
tiple explanation methods will not show the sensitive fea-
ture as important - even if in fact it is. Very recently, some
works explored similar ideas. (Pruthi et al. 2019) exam-



ined how attention-based methods could be fooled. (Jain
and Wallace 2019) showed that ‘attention is not explana-
tion’, demonstrating that attention maps could be manipu-
lated after training without altering predictions. (Heo, Joo,
and Moon 2019) considered modifying vision models so
that explanations could be controlled. (Slack et al. 2019)
employed a ‘scaffolding’ construction specifically to fool
Local Interpretable Model-Agnostic Explanations ‘LIME’
(Ribeiro, Singh, and Guestrin 2016) and Shapley Values
‘SHAP’ (Lundberg and Lee 2017) explanation methods.

We believe we are the first to focus on fairness of a model
in relation to popular explanation methods. We describe our
approach to modifying a model in order to hide unfairness in
Section 3. We show in Section 4 how unfairness can be ar-
bitrarily high, despite no dependence on a sensitive feature.
In Section 5 we show empirically that our approach has lit-
tle impact on a model’s accuracy while being able to fool
simultaneously many popular approaches to explanation: 1.
Gradients (Simonyan, Vedaldi, and Zisserman 2013), 2. Gra-
dients × input (Shrikumar et al. 2016), 3. Integrated Gradi-
ents (Sundararajan, Taly, and Yan 2017), 4. SHAP (Lund-
berg and Lee 2017), 5. LIME (Ribeiro, Singh, and Guestrin
2016), and 6. Guided-backpropagation (Springenberg et al.
2014).

Our approach introduces an explanation loss term during
training. This is similar to (Kiritoshi, Tanno, and Izumitani
2019), who propose a loss function which enforces an L1

penalty on the learned function gradient to reduce the noise
of explanations. In contrast, we penalise the gradient with
respect to specified target feature to reduce its importance
score.

3 METHOD
Our approach retrains an existing model to minimise a mod-
ified loss objective function: to the original loss we add an
‘explanation loss’ term, which is the gradient of the orig-
inal loss with respect to a chosen target feature. Our attack
method achieves three objectives: 1. We obtain a model with
low local sensitivity to the chosen feature, yet with little loss
in accuracy; 2. The low sensitivity generalises to unseen test
points; and 3. Low feature sensitivity leads to low attribu-
tion for the target feature across all six feature importance
explanation methods that we experimented with.

3.1 Notation
We consider differentiable functions f : X 7→ Y , which
map an input matrix in X ⊆ Rn×m with n samples and
m features (attributes), to an output matrix in Y ⊆ Rn×d,
where each row is a 1-hot vector of softmax probabilities
over d output classes. While our approach applies to arbi-
trary d, in this paper, we focus on d = 2 corresponding
to a ‘good’ and ’bad’ output classes (e.g., receive a loan or
not). We write x(i) for the input vector row i with m fea-
ture columns, and X:,j for an entire feature j column vec-
tor. Aiming for readability, we allow for various number of
points n to be processed, and may write f(x) for the func-
tion evaluated on one input point x. We write g for a lo-
cal feature explanation function which take as input a model

f and an input point of interest x, and returns feature im-
portance scores g(f,x) ∈ Rm, where g(f,x)j is the im-
portance of (or attribution for) feature xj for the model’s
prediction f(x). We consider neural network functions fθ
parameterised by θ. Although some input features are cate-
gorical (e.g. male or female), as is standard, here we encode
as numeric values and treat the variables as continuous.

3.2 Formulation
Suppose we have trained a model fθ with acceptable perfor-
mance but with undesirably high target feature explanations.
We would like to find a modified classifier fθ+δ , with the
following properties:

1. Model similarity: the new model has similar performance

∀i, fθ+δ(x
(i)) ≈ fθ(x(i)).

2. Low target feature attribution: the importance of the tar-
get feature j (e.g., gender or race), as given by a chosen
explanation method g, decreases significantly

∀i, |g(fθ+δ,x
(i))j | � |g(fθ,x

(i))j |.

3.3 Adversarial Model Explanation Attack
To manipulate the feature importance explanations, we ini-
tialise with a pre-trained model and then modify it by
optimising with an extra penalty term, explanation loss,
weighted by a hyperparameter α, which is normalised over
all n training points (full batch):

L′ = L+
α

n

∣∣∣∣∇X:,j
L
∣∣∣∣
p
, (1)

where j is the index of the target feature that we want the
model to appear to avoid using, and ∇X:,j

L is the gradient
vector of the original cross-entropy loss with respect to the
entire feature column vector X:,j . We apply the Lp norm.1
We define a new objective that regularises for low derivative
with respect to the target feature across the training points,
and results in the modified classifier, fθ+δ . We outline the
procedure in Algorithm 1, where we used τ = 100 consis-
tently since this was sufficient for convergence across runs.
In all experiments we use α = 3. We discuss varying α in
Section A.1.

We clarify a difference between our approach for expla-
nation loss and the recent method of (Heo, Joo, and Moon
2019). While their approach takes the gradient of the one
correct label element from the logits layer just before the
softmax output, we take the gradient of the cross-entropy
loss. Taking the gradient of the loss, rather than only the
correct label element, contains extra information about the
other classes, with the potential to improve generalisation
across explanation methods and test points.

3.4 Fairness Metrics
In this paper we emphasise that an explanation method does
not reliably reveal much about fairness of a model. A key

1We use p = 1 since it led to rapid convergence and good re-
sults.



Algorithm 1 Learning a Modified Model with Concealed
Unfairness

Input: Original classifier fθ, target feature’s index i, input
matrix X ∈ Rn×m with corresponding targets y ∈ Rd,
and number of iterations τ .
Initialise δ = 0
for t ∈ [0, τ ] iterations do

Calculate the cross entropy loss L with respect to fθ+δ
Calculate the explanation loss

ζ =
α

n
× Lp

([∣∣∣∣ ∂LX1,i

∣∣∣∣ , ∣∣∣∣ ∂LX2,i

∣∣∣∣ , . . . , ∣∣∣∣ ∂LXn,i

∣∣∣∣])
Calculate the total loss L′ = L+ α× ζ (equation 1)
Update model parameters with∇θL′ using Adam

end for
Output: Modified classifier fθ+δ

question is then whether or not in fact the model is fair.
We explore this using standard definitions from the liter-
ature (Hardt, Price, and Srebro 2016; Beutel et al. 2017),
evaluating the three fairness metrics2 below before and after
learning the modified model. We consider model predictions
for two primary sub-groups based on a sensitive feature, des-
ignating the sub-groups as privileged or unprivileged follow-
ing (Bellamy et al. 2018) (e.g., gender males or females).

1. Demographic Parity (DP): the predicted positive rates for
both groups should be the same.

2. Equal Opportunity (EQ): the true positive rates (TPR) for
both groups should the same.

3. Equal Accuracy (EA): the classifier accuracy for both
groups should be the same.

Note that it is typically not possible to satisfy these fairness
notions simultaneously (Kleinberg 2018).

4 HOW EXTREME COULD UNFAIRNESS
BE, YET STILL BE HIDDEN?

Here we consider the limits of how unfair a model might be,
yet still appear to be fair according to explanation methods.
Worryingly, and perhaps surprisingly, we show that in fact a
model can be extremely unfair with respect to a feature, yet
appear to have no sensitivity at all to the feature.

Consider the situation shown in Figure 1. Each data point
has two features: a continuous x1 and a binary x2. Let x2 be
a sensitive feature, such as gender, given by the shape of the
point: assume circles are female, and squares are male. The
true label y for each point is indicated by its colour: red for
good and blue for bad. The black curve indicates the model’s
softmax predicted label value ŷ as a function of the features
(x1, x2). If above 0.5, then 1 is output, else 0 is output; this is
shown by the pale blue/red boundary in background colour.
Further, assume the model does not vary in the direction of
x2 (hence in particular has 0 gradient).

2In the Appendix we investigate a full suite of popular fairness
metrics used by the IBM AIF360 Toolkit (Bellamy et al. 2018).

Figure 1: This example illustrates a function with no depen-
dence on target feature yet extreme unfairness, showing the
softmax predicted label ŷ versus an input feature x1, which
is not the target feature. Each shape shown is a data point.
The colour indicates the true label, i.e., blue means y = 1
and red means y = 0. The shape shows the value of the
target feature: let square be male and circle be female. The
black curve shows a function mapping from features to esti-
mated output label ŷ. Assume the function is constant across
gender. The blue circle is in the red zone, whereas it should
be in the blue zone (see Section 4). Best viewed in colour.

Five data points are shown. The model makes only one
classification mistake (the blue circle receives ŷ = 0 yet has
y = 1). However, this model is highly unfair with respect to
the sensitive feature for all three metrics described in Sec-
tion 3.4. Equal Opportunity is maximally violated: for fe-
male circles, 0/1 = 0% deserving points get the good (blue)
outcome; for male squares, 2/2 = 100% deserving points
get the good (blue) outcome. Equal Accuracy is also max-
imally violated: for female circles, 0/1 = 0% points are
accurate (blue circle should be placed in the blue zone); for
male squares, 4/4 = 100% points are accurate (correctly,
blue squares are in the blue zone, red squares are in the red
zone).

Finally, consider demographic parity (DP): for female cir-
cles, 0/1 = 0% get the good outcome; for male squares,
2/4 = 50% get the good outcome. Observe that if we keep
adding more blue square data points near the ones already
shown then the female ratio stays unchanged while the male
ratio tends to 1, thus we can obtain any arbitrarily high level
of DP unfairness.

Remark. Another way to view our example is that we
have a model which by construction ignores the sensitive
feature x2. This is sometimes considered a form of process
fairness via unawareness (Chen et al. 2019; Grgić-Hlača et
al. 2018). It is known that even if a model cannot access a
sensitive feature, it may still be unfair with respect to it –
for example, the model might be able to reconstruct the sen-
sitive feature with high accuracy from other features. This
may lead one to wonder how our approach differs from sim-
ply removing the target feature.

The difference is that our approach attempts to learn a
function which has very low derivative with respect to the
sensitive feature at training points – hence, we might learn
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Figure 2: A comparison of the accuracies of the modified
model, a model trained with the target feature x2 held at con-
stant, and the original model. Observe that across datasets
and target features, our method achieves an accuracy com-
parable to the one of the original model and significantly
higher than that of the constant model, demonstrating that
the modified model is not merely ignoring the target feature.
Results are averaged across 10 initialisations for a model
with 5 hidden layers. Best viewed in colour.

a function which varies significantly between the two pos-
sible sensitive feature settings yielding different outputs for
male versus female. We explored this by comparing modi-
fied models learned with our approach against models where
the sensitive feature was held constant (we did this, rather
than simply remove the feature, in order to maintain model
complexity). Accuracy results are shown in Figure 2, illus-
trating that our method attains higher accuracy (more results
are shown in the Appendix A).

5 RESULTS
Here we report and discuss empirical results of applying our
adversarial model explanation attack.

5.1 Experimental Set-up
Datasets We conduct experiments on three datasets with
sensitive features from the UCI machine learning reposi-
tory (Dua and Graff 2017) (adult (Adult) – gender, race;
German credit (German) – age, gender; bank market (Bank)
– age); and the dataset for Correctional Offender Manage-
ment Profiling for Alternative Sanctions (Larson et al. 2019)
(COMPAS) – gender, race, age.

Models For each dataset we train 0-5 hidden layer mul-
tilayer perceptrons (MLPs) with 100 units in each layer,
regularised with a layer-wise L2-norm penalty weighted by
0.03 for up to 1,000 epochs with early stopping and patience
of 100 epochs with 10 random initialisations. We use L2-
norm regularisation because we want to avoid the regime
of sparse weights. The penalty 0.03 was empirically vali-
dated to give the best validation accuracy. We use Tensor-
flow (Abadi et al. 2016) to conduct the original optimisation
with Adam (Tieleman and Hinton 2012), a global learning
rate of 0.01 and 0.005 learning rate decay over each update

and with full batch gradient descent. We conducted hyper-
parameter optimisation to determine that optimisation with
L1-norm and α = 3 converges slightly faster and to slightly
better configurations both in terms of model similarity and
low target feature attribution metrics across different settings
in comparison to both the L2 and L∞ norms.

Feature Attribution Methods We evaluate six popu-
lar feature attribution methods: Sensitivity analysis gradi-
ents (Simonyan, Vedaldi, and Zisserman 2013) (Grads),
Gradients × input (Shrikumar et al. 2016) (GI), Integrated
Gradients (Sundararajan, Taly, and Yan 2017) (IG), an ap-
proximation of Shapley values Expected Gradients (Lund-
berg and Lee 2017) (SHAP), Local Interpretable Model-
Agnostic Explanations (Ribeiro, Singh, and Guestrin 2016)
(LIME), and Guided-backpropagation (Springenberg et al.
2014) (GB). We conceal unfairness using the training data
and report evaluations both on the training data, and on a
test set that was used neither for training the original model,
nor for the modified model.

Fairness For the fairness evaluation, we use the imple-
mentation of IBM AIF360 Toolkit (Bellamy et al. 2018) and
we binarise each sensitive features in the following fashion:
Gender: Male - privileged, Female - unprivileged; Age: 25>
x privileged, 25 < x unprivileged; Race: White - privileged,
Non-white - unprivileged; Martial status: Single - privileged,
Not single - unprivileged.

5.2 Evaluation Criteria
Attack We consider the concealing procedure successful
when both properties from Section 3.2 are well satisfied. We
measure model similarity between the modified model and
the original model through three metrics:
• Loss diff.: Difference between the categorical cross en-

tropy losses (L) of both models averaged over all test
points.

• Acc. diff.: Difference in the accuracy of both models.
• Mismatch (%): Difference in the output of the two mod-

els, as measured by the percentage of datapoints, where
the predictions of the two models differ.
Measuring the effect of the concealing procedure on fea-

ture importance is more complex. We want to avoid the
pathological case of the attack shrinking the importance of
all features and inducing a random classifier. Therefore, we
investigate the interpretation dissimilarity based on the rela-
tive importance ranking of a feature. Figure 3 illustrates the
ranking histogram of the relative feature importance, which
describes the ranking probability mass distribution of the ex-
planation. We show a case where the initial model had low
target feature gradient, demonstrating that even in this case,
the attack was successful. An effective attack shifts the dis-
tribution from left to right.

5.3 Low Target Feature Attribution
Figure 3 illustrates three important points. First, out method
significantly decreases the relative importance of the target



Figure 3: Importance ranking histograms for gender as the sensitive feature on adult test set of the original (left) and modified
(right) models. Each histogram represents the ranking across the test set assigned by the designated feature importance method.
A higher ranking number (further to the right) indicates smaller feature importance. Observe that the modified model has
successfully shifted the ranking for all explanation methods.

feature, effectively making it the least important of all fea-
tures. Second, the attack transfers across six different ex-
planation methods. Third, the attack generalises for unseen,
held-out test datapoints.

Transferability Figure 3 illustrate that the explanation at-
tack transfers across explanation methods. The attack trans-
fers to other gradient-based explanation methods and sig-
nificantly decreases the importance for 6 other explanation
methods (Gradients * Input, Integrated Gradients, Guided-
backpropagation, LIME, SHAP). Notice that in the case of
the Adult dataset and gender target feature for GI, IG, GB
and LIME, the explanation attack has moved down the target
feature importance out of the Top ranking features for thou-
sands of data points, demonstrating that the attack works
even when the target feature has high relative importance.

Generalisation The generalisation of the attack to test
points is noteworthy since we might expect that the deci-
sion boundary would be perturbed locally around the train-
ing points to affect only their explanations, without signifi-
cant change for test points, especially if far away in feature
space (see Appendix for more).

Further, Table 1 confirms that the attack generalises across
datasets and features since it is capable of shifting the impor-
tance ranking distribution considerably for a total of 10 fea-
tures over 4 datasets. The table indicates that the test values
for both the model similarity and low target feature attribu-
tion are either similar or lower.

5.4 Fairness Evaluation
Figure 5 illustrates one example where our approach can
hide a sensitive feature in such a way that the modified
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Figure 4: Evaluation of the impact our explanation attack
has on unfairness (signed unfairness of modified model mi-
nus signed unfairness of original). We show three fairness
metrics across 4 datasets and their sensitive features, aver-
aged over 6 model complexities (number of hidden layers)
and 10 random initialisations. We find no consistent pattern
of impact, though Equal Accuracy (EA) appears to vary the
least.

model would appear fair using local-sensitivity explana-
tion techniques, yet actually could become more or less un-
fair according to multiple fairness measures. The low local-
sensitivity can result in a decision boundary that varies ir-
respective of the sensitive feature values, such as the one
illustrated in Figure 1.

We run further experiments across model complexities
and different initialisations. Figure 4 shows that the adver-
sarial explanation attack does not have a consistent impact
on the fairness metrics, despite the fact that the apparent im-
portance of the feature is negligible. The attack causes the
resulting model to have unpredictable unfairness behaviour,
becoming more unfair for some features, less unfair for oth-
ers, or maintains a relatively similar fairness levels to the
original model. The unpredictability of the unfairness ar-



Figure 5: Unfairness across 3 metrics for a particular initialisation of a 5 hidden-layer model: Equal Opportunity, Demographic
Parity and Equal accuracy. Red line means that the modified model became more unfair, i.e., it (triangle) moved further away
from 0. Blue line means that the modified model became less unfair, i.e., it (triangle) moved closer to 0. We find no consistent
pattern. To some extent, the unfairness with respect to Equal Opportunity and Demographic Parity is more often higher for the
modified model and does not always behave similarly to removing the feature (represented by the cross). Equal accuracy (of
subgroups between both models) was least affected by our attack.

ζ (10−2)) Acc ∆ Mismatch (%)
Dataset Feature

adult age 9.82 -3.07 10.72
gender 11.11 -2.71 10.29
race 10.18 -2.78 10.37

bank age 13.39 -2.23 7.50
marital 12.96 -2.27 7.43

compas age 4.34 -3.20 18.96
race 3.62 -2.70 18.38
sex 3.20 -2.78 18.39

german age 1.82 -5.83 17.72
gender 2.24 -4.21 15.88

Table 1: Summary of model similarity and low target feature
attribution metrics over four datasets and six features aver-
aged over all complexities evaluated on the test set. ζ indi-
cates the explanation loss, and Acc ∆ is the change in accu-
racy between the original and modified model. We find that
the explanation loss and the change in accuracy between the
original and modified model over the test set is low. These
results suggest that our attack is successful in generalising
across unseen test points.

gues strongly against relying solely on transparency to verify
model fairness.

Nevertheless, in most cases, the fairness metrics are af-
fected similarly in the sense that if one of the models be-
comes more unfair according to one metric, most of the
remaining metrics vary accordingly. One possible explana-
tion for the inconsistent behaviour of the fairness metrics
after the attack could the presence of confounding factors.
Although the explanatory importance of a feature could be
low, the model might have learned to rely on other features,
which could be used to infer the target feature (e.g., some-
one’s marital status of a husband or wife can be used to infer
their gender). Another possibility is that the adversarial ex-
planation attack results in a model that: a) effectively keeps
the same model, but flattens the derivatives to make it locally

insensitive to a feature; or b) ignores the feature altogether.
We discussed evidence in favour of a) over b) in Section 4.
Further, Figure 5 shows that the unfairness of our modified
model does not match that of a model which simply ignores
the target feature.

6 CONCLUSION AND FUTURE WORK

We demonstrated that many popular explanation methods
used in real-world settings are not able to evaluate reliably
whether or not a model is fair. We provided an intuitive ex-
planation to show how this can happen. We introduced a
method to modify an existing model and showed its empir-
ical success in downgrading the feature importance of key
sensitive features across six explanation methods and unseen
test points across four datasets, while having little effect on
model accuracy.

Our work raises concerns for those hoping to rely on such
explanation methods to measure or enforce standards of fair-
ness. For example, a trained loan scoring system might be
unfair with respect to a sensitive feature such as gender.
However, the model’s parameters might be modified in such
a way that a feature importance explanation could falsely
suggest that the output does not depend on this sensitive fea-
ture. If transparency methods are to be used, we argue for
rigorous tests of robustness to understand and control the
extent to which they can be manipulated.

There are many interesting questions to explore in future
work. How might the explanation attack be refined (e.g., to
explore its performance if extended in the natural way to
be used against multiple target variables), and how might it
be well defended against? One could further explore how
the attack relates to the dataset, to the model class, to the
explanation method, and the difference between the model’s
representational capacity and the dataset’s complexity.
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A Appendix
A.1 Hyper-parameter Investigation
Explanation Loss Norm We observe that the L1-norm
converged slightly faster and to slightly better configurations
both in terms of model similarity and low target feature at-
tribution metrics across different settings in comparison to
both the L2 and L∞ norms.

The intuition behind these results comes from the inter-
pretation of the Lp as a regulariser of the explanations. The
backpropagated gradient of the L1-norm is constant regard-
less of the norm’s parameter value; hence, the feature impor-
tance explanations of the target feature (| ∂L

∂Xi,j
|) with magni-

tudes both much greater than and closer to 0 are equally pe-
nalised, resulting in sparse explanations. On the other hand,
the backpropagated gradient of the L2-norm is linear with
the norm’s parameter and penalises explanations with large
magnitudes, but does not affect as much explanations with
relatively small values. This results in smooth, but not nec-
essarily sparse explanations.

The effect on explanations with relatively small values is
even more pronounced for the L∞-norm, where the back-
propagated gradient is non-zero only for the the highest ex-
planation value. Hence, training with L∞ norm resembles
a single sample gradient descent and results in significantly
slower convergence. Further, we observed that the choice of
the explanation loss norm is strongly coupled with the value
of the explanation penalty term α. All three norms converge
to very similar configurations with the appropriate α. Since
the L2-norm over emphasises extremely high value explana-
tions, it requires a lower α. This is in contrast to L∞-norm,
which reflects the loss of a single example and requires an α
of orders of magnitude higher than the L1-norm.

Explanation Loss Weight α Figure 6 demonstrates that
the learning dynamics of the adversarial explanation attack
vary with the explanation penalty term α. Observe that at
one extreme, the penalty term α corresponds to unnotice-
able changes in the explanation loss (first sub-figure), while
at the other extreme to a catastrophic change that leads to
a constant model which ignores all features and drastically
changes the model predictions (third sub-figure). Within the
optimum range (α ∈ [10−1, 101]), we can minimise the ex-
planation loss significantly while keeping the model predic-
tion dissimilarity relatively low. We set α = 3 for all exper-
iments.

Learning algorithm We tried various parameter learning
approaches and observed that the choice of a learning al-
gorithm could make a significant difference. Similarly to
regular training, adaptive learning rate algorithms achieve
significantly better results. A vanilla-SGD optimisation is
much more likely to converge to constant classifiers that pre-
dict the label distribution. It also requires bespoke learning
rate scheduling routines similar to (Smith 2018), where the
learning rate is adopted dynamically based on the explana-
tion loss. In all experiments, we used Adam (Tieleman and
Hinton 2012).

Figure 6: Effect of α ∈ [10−5, 10−5] in applying our expla-
nation attack to the adult dataset and gender target feature
on the model similarity and low target feature attribution
metrics (y-axis): (top) average explanation loss per sample
(Expl. loss); (middle) the mean of the sensitive property im-
portance ranking distribution (Mean diff.); and (bottom) the
percentage difference between the two models’ predictions
(Mismatch). Notice that optimal α values lie in the range
[10−1, 101].

We use five metrics to measure low target feature attribu-
tion through the shifts in importance ranking distributions:

• Top k: the number of datapoints where the sensitive fea-
ture received rank k or above.

• Mode shift: the difference between the modes of the dis-
tribution (Avg. #shifts).

• Mean shift: the difference between the means.
• Highest rank: the highest rank that the sensitive feature

received across all datapoints.
• Highest ranking datapoints (HRD): the number of dat-

apoints where the sensitive feature received the highest
rank. This is the same as Top k, where k = highest rank.
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Gradient*Input 3.7 13.0 9.3 4.292 11.504 7.212 0.4 4.2 714.5 1.2 4485.0 3.2 63.2 0.0
Gradients 5.8 13.0 7.2 6.554 12.602 6.048 3.0 7.6 410.4 32.2 1984.7 0.1 0.0 0.0
Guided-Backprop 6.9 13.0 6.1 5.595 12.590 6.995 2.3 7.8 684.0 0.0 2904.2 0.0 0.0 0.0
Integrated Gradients 4.1 12.8 8.7 3.903 11.443 7.540 0.4 4.7 690.0 3.6 4510.5 5.3 38.7 0.0
LIME 4.0 12.8 8.8 4.373 10.573 6.200 0.9 2.5 14.3 0.0 4029.1 28.6 1.2 0.0
SHAP 3.7 12.9 9.2 4.499 12.027 7.528 0.4 6.0 111.5 0.1 3821.1 0.1 106.3 0.0

Table 2: Evaluation of model similarity and low target feature attribution after an adversarial explanation attack for six expla-
nation methods on Adult Gender Train (‘O’ is original model, ‘M’ is modified model). Notice that the mode and mean ranking
of the sensitive feature increases after our attack. For nearly all datapoints, the sensitive feature moves out of the top five most
important features. The results are averaged over 10 random initialisation of a 5 hidden-layer model.
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Figure 7: A comparison of the accuracies of the modified model, a model trained with the target feature x2 held at constant,
and the original model across 10 random initialisations for a models of increasing complexity (number of hidden layers from
0-9) on a held-out test set. Notice that for higher complexities the model constant and the original model overlap. For higher
complexities the adversarial attack achieves higher results than both the original and constant models, which suggests that our
approach can also be used as a regulariser. Notice that the variance across initilisations also decreases with deeper models
suggesting that higher model complexity results in a stronger explanation attack.



A.2 Fairness
We also compare a wider range of popular fairness metrics
used within the IBM AI Fairness 360 Toolkit:
• Equal Odds (EO): the true positive rates (TPR) and the

true negative rates (TNR) for both groups should the
same.

• Disparate Impact (DI): the ratio of positive rate for the
unprivileged group to that of the privileged group - 1.

• Theil Index (TI): between-group unfairness based on gen-
eralized entropy indices (Speicher et al. 2018).
Figure 8 demonstrates that the signed unfairness differ-

ence between the modified and the original models is in-
consistent across datasets and features, but consistent across
fairness metrics. On the contrary, Figures 9 and 9 demon-
strate that the absolute unfairness difference is highly depen-
dent on the model complexity. That is for models of lower
complexities the attack makes the modified model more un-
fair consistently across datasets, features and fairness met-
rics. However, for models of higher complexities, the attack
leads to a model that is more unfair according to some fair-
ness measure, but less unfair according to others. This is a
particularly surprising results, which we will investigate in
future work.
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Figure 8: Evaluation of the impact our explanation attack has
on unfairness (signed unfairness of modified model minus
signed unfairness of original). We show all fairness metrics
used by IBM AI Fairness 360 (Bellamy et al. 2018) across 4
datasets and their sensitive features, averaged over 6 model
complexities (number of hidden layers) and 10 random ini-
tialisations. We find no consistent pattern of impact, though
Disparate Impact (DI) appears to vary the most.
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Figure 9: Evaluation of the impact our explanation attack
has on unfairness (absolute unfairness of modified model
minus absolute unfairness of original). We show three fair-
ness metrics across 4 datasets and their sensitive features,
averaged over model complexities 0-5 number of hidden
layers and 10 random initialisations. We find no consistent
pattern of impact, though Equal Opportunity (EQ) appears
the most variable.
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Figure 10: Evaluation of the impact our explanation attack
has on unfairness (absolute unfairness of modified model
minus absolute unfairness of original). We show three fair-
ness metrics across 4 datasets and their sensitive features,
averaged over model complexities 6-9 number of hidden
layers and 10 random initialisations. We find no consistent
pattern of impact, though Equal Opportunity (EQ) appears
the most variable.



A.3 Decision Boundary: How much does the
model really change?

We investigate the degree to which the modified model has
changed in two ways. First, we visualise the decision bound-
aries in 2D PCA projected space of both the original and the
modified models (see Figure 11. Second, we measure the ef-
fect of the sensitive feature on different models through a
partial dependence plot (Friedman 2001), which plots f(xi)
vs xi, where f(xi) is the response to xi with the other
attributes averaged out. Despite the significant changes in
explanation, the small number of mismatches shown in Ta-
ble 1, coupled with the small change to the decision bound-
ary, as illustrated in Figure 11 suggest that overall the model
has not changed significantly. However, Figure 12 shows
that the model can change significantly with respect to the
target attribute.

Figure 11: Comparison of the decision boundary between
the original (left) and modified (right) classifier after an at-
tack on Adult Capital Gains (most important feature) in 2D
reduced input space. Red and green backgrounds indicate
negative and positive predictions, respectively. Notice the
slightly modified boundary in the lower end region with few
datapoints. The circles represent the 2D projections of each
point in the training and the test set, while their colour indi-
cates the true label.



Figure 12: Partial dependence plots showing how the predicted output varies according to the sensitive feature. Results shown
are for a 5 hidden-layer model. Best viewed in colour.


